

EPA Method 6020 using Shimadzu's ICPMS-2030

Andrew Fornadel, Ph.D.

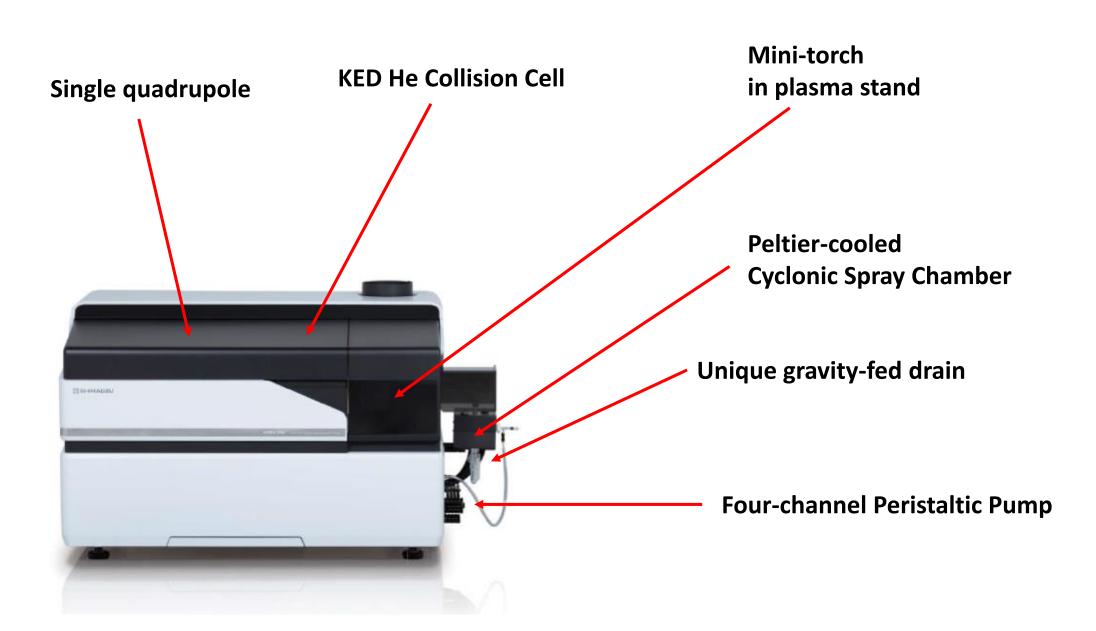
Shimadzu Scientific Instruments Columbia, MD

- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

Outline of Presentation

1) Introduction to Shimadzu's ICPMS 2030

- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions



Shimadzu's ICPMS 2030

- Shimadzu has been manufacturing ICPs for ~40 years, ICPMSs for ~10 years
- The ICPMS 2030 was released to the US Market in early 2016
- Part of Shimadzu's Mass Spec line-up, including LCMS, LCMS/MS, GCMS, and GCMS/MS

Shimadzu's ICPMS 2030 - Hardware

Shimadzu's ICPMS 2030 - Software

	Continuou	sly Measure	Auto	matical	ly Instrument	Calibration	Autom	natically Shut of Pla	asma	Aut	omatically	Save	Automat	tically Print					
_	E+09-	any measure	1 1 1 1 1 1	more	1 112221121	Canaranon	11012	rescary snarorr a	0.21112			cure L	,						
																			Offline
	E+06-																		Plasma
1.0	E+00-																		Safety
																			Temp. in Stand:
1.0	E+03-																		Stand Door:
																			Coolant Water:
																			Ar Gas P(kPa):
			20	4		60	80	100		120		140	160	180	200	220	240	260	Temp. in R.F.G:
_		0	20		•	00	00	100		120		140	100	100	200	220	240	200	Dew condensation:
Re	call Samp	le(Addition)	InsertL	ine	Batch Edit	Delete													Exhaust duct
No.	Class	Repeat Num	Sample	Pos	Weight Factor	Volume Factor	Correction Factor	Comment	Measu	r Judg	Exclud	Date						^	Radio Frequency
1		Num	Name		Factor	Factor	Factor		e	e	e		_						Power(kW):
2										-			-						Gas Flow Rate(L/min)
3																			Plasma:
4									-	-									Auxiliary:
6										-			_						Carrier:
7																			Stand
8										-			-						Depth(mm):
10				-						-			-						Chamber Temp (C):
10 11																		~	Mix Gas Presure(kPa):
	Rep Mea	s. Val	RSD Q	AVQC Ji	adge									nalysis of the latest					Flow Rate(L/min):
			Concentration				Symbol:	\sim											
1	-												- San	nple No.					Auto Sampler
Cla	ss Sam	sie Name												ss nple Name					Nozzle Dest
-	-												Date	e/Time					Peristatic Pump
														ight Factor ame Factor					Settings:
														rection Factor					Speed(r.p.m.):
													Con						Cell Gas
																			Condition:
																			Presure(kPa):
																			Flow Rate(mL/min):
																			Instrument State

- Software built on Shimadzu's LabSolutions platform
 - Offers easy transfer between Shimadzu instruments due to similar UX/UI
- Several features that simplify analysis
 - Fully-automated tuning and optimization
 - Method development and data diagnosis assistant functions
- Can be networked with other instrument platforms and/or made fully compliant in a variety of regulatory environments

- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

EPA 6020 – A brief primer

ABSTRACT

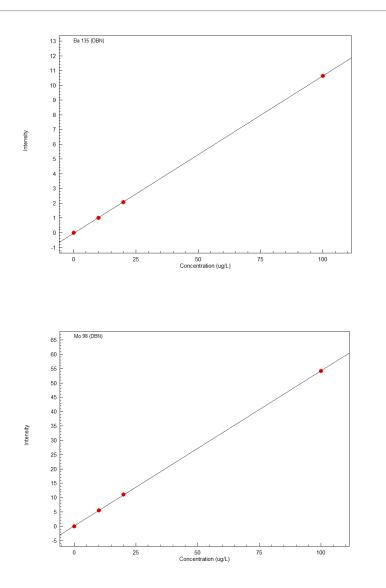
Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) provides test procedures and guidance which are recommended for use in conducting the evaluations and measurements needed to comply with the Resource Conservation and Recovery Act (RCRA), Public Law 94-580, as amended. These methods are approved by the U.S. Environmental Protection Agency for obtaining data to satisfy the requirements of 40 Code of Federal Regulations (CFR) Parts 122 through 270 promulgated under RCRA, as amended. This manual presents the state-of-the-art in routine analytical testing adapted for the RCRA program. It contains procedures for field and laboratory quality control, sampling, determining hazardous constituents in wastes, determining the hazardous characteristics of wastes (toxicity, ignitability, reactivity, and corrosivity), and for determining physical properties of wastes. It also contains guidance on how to select appropriate methods.

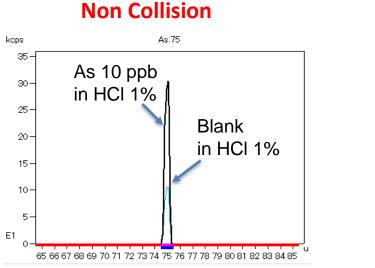
Several of the hazardous waste regulations under Subtitle C of RCRA require that specific testing methods described in SW-846 be employed for certain applications. Refer to 40 CFR Parts 260 through 270, for those specific requirements. Any reliable analytical method may be used to meet other requirements under Subtitle C of RCRA.

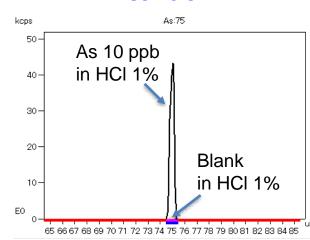
- Introduced in Update V of SW-846.
- Elemental analysis for waters and digests of soils / sludges
- Unlike EPA 200.8, allows for the use of modern interference reduction technology, such as collision/reaction cells.
- Also specifies more "common" cations, such as Fe, K, Ca, and Na.

- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

Implementing EPA 6020 using the ICPMS 2030


- Method run using standard instrument configuration
 - No special hardware needed
- Standards Multi-element EPA 6020 package from Inorganic Ventures
- Internal Standards Added in-line using second peristaltic pump channel
- CRMs from High Purity Standards, NIST


SHIMADZU


```
SHIMADZU
```

Results / Data

- Good linearity across calibration range, including major and trace cations.
- KED He collision cell effective at removing common polyatomic interferences, e.g., oxides, chlorides, etc.
 - Verified using spectral interference check

Collision

Results / Data

	NIST 1643f	Recovery	HPS Soil A	Recovery		
Be	14.3	104.8	n/a	n/a		
Na	17963.8	95.4	73.99	105.7		
Mg	7133.5	95.7	667.1	95.3		
Al	137.9	103.1	524.5	104.9		
K	1845.6	95.5	215	107.5		
Ca	32078.7	109.0	357.7	107.5		
V	36.7	105.0	0.1075	102.2		
• Cr	19.1	101.7	n/a	n/a		
C. Mn	40.4	109.8	0.00402	100.5		
Fe	93.9	100.5	183.6	91.8		
Co	23.2	99.4	n/a	n/a		
Ni	60.3	100.9	0.1019	101.9		
Cu	20.9	96.7	0.2721	90.7		
Zn	76.4	102.7	1.086	108.6		
As	56.6	98.6	0.1998	99.9		
Se	10.7	91.1	0.00945	94.5		
Mo	125.9	109.2	n/a	n/a		
Ag	0.9	93.3	n/a	n/a		
Cd	5.7	96.0	0.003201	106.7		
Sb	57.4	103.6	0.033	110		
Ва	513.5	99.1	4.96	99.2		
Hg	n/a	n/a	n/a	n/a		
тΪ	35.7	98.9	n/a	n/a		
Pb	17.9	97.0	0.4044	101.1		

- All analytes demonstrate acceptable levels of recovery, CRMs show +/- 10% recoveries.
 - Not shown: spike and recovery samples also acceptable
- Long-term stability good over ~10 hour period, with internal standards recovery within 10%.
- Spectral interference checks show minimal interference on analytes from matrix.

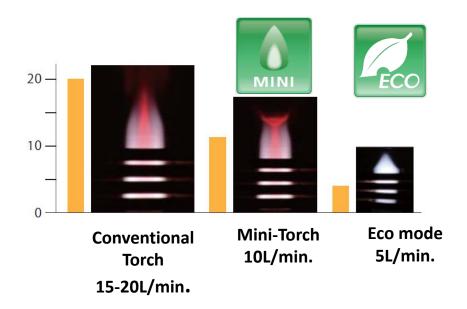
- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

Lowest Operating Costs

33-50% reduction of argon consumption by Mini torch

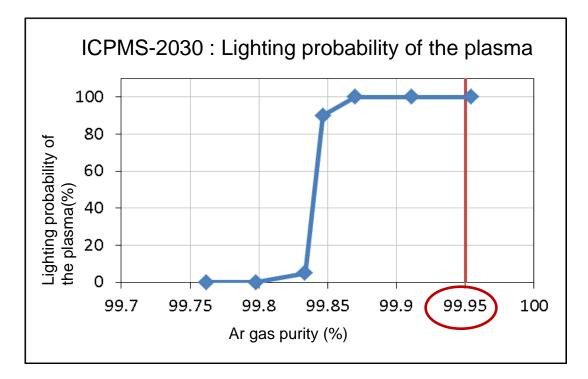
Approximately 33-50% reduction in argon gas consumption rate. Conventional torch: ~15-20 L/min; Shimadzu Mini torch: ~10 L/min

70% reduction of argon consumption in standby mode



Reduces the RF output to 0.5 kW and the plasma gas about 5 L/min. during standby saves energy and reduces costs.

Ar gas of 99.95% or greater purity is sufficient



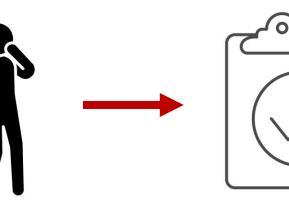
Using industrial argon with lower price reduces costs. UHP Ar over 99.999% purity used in conventional ICPs is not necessary.

Lowest Operating Costs

ICPMS-2030 can generate plasma using 99.95% Ar gas

Probability of Plasma Ignition

ICPMS-2030 is compatible with lower purity (99.95%) because RF-supply and ignition sequence are optimized.


Method Assistant Functions

Development Assistant

- Run blank and any representative unknowns in qualitative mode
- Select analysis elements
- Software makes mass, calibration, and internal standard recommendations

Diagnosis Assistant

- Software assesses *entire* mass spectrum for interference
- Reports data quality and any 'concerns' (isobarics, polyatomics, *etc*.)
- Independent of QA/QC functionality

- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

Productivity Enhancement

 The typical environmental laboratory is looking for ways to decrease costs, increase sample throughput, or adapt to other ICPMS analytical methods as a revenue stream.

• Higher throughput, lower downtime, lower operational costs.

• There are several ways in which Shimadzu's ICPMS-2030 can achieve those goals and streamline the analytical process.

Autosamplers

• Full integration with a variety of autosamplers with 60-, 120-, and 240-sample capacities available.

• Autosamplers available from Shimadzu and from Teledyne CETAC

AS-10 60 Samples

ASX-280 120 Samples

ASX-560 240 Samples

Rapid Sample Introduction

 Integration with Teledyne-CETAC's ASXpress can reduce analytical time by ~60%^{*}.

- Rapid sampling, uptake, and injection using vacuum pump and sample loop.
- Reduces the time required to get sample from the autosampler to the nebulizer. The rest of the analysis proceeds as normal.

Microwave Digesters

- Shimadzu has a unique relationship with Anton Paar to provide microwave digestion capabilities in conjunction with our elemental spectroscopy instrumentation.
- Provides soup-to-nuts solutions for sample preparation and analysis.

LC-ICP-MS

A growing area of interest is LC-ICP-MS as certain elements have different toxicities and bioavailabilities depending on their speciation

- LC-ICP-MS can conduct speciation analyses such as inorganic arsenic and organic arsenic, As³⁺ and As⁵⁺, Cr⁴⁺ and Cr⁶⁺.
- In short, use LC to separate species, use ICPMS as detector.
- Complete control of ICPMS and LC system in one simple software package, again built on the LabSolutions platform.

- 1) Introduction to Shimadzu's ICPMS 2030
- 2) Brief background on EPA 6020
- 3) Application data using the ICPMS 2030
- 4) Features of the ICPMS 2030 for your Environmental Lab
- 5) Productivity enhancement using the ICPMS 2030
- 6) Conclusions

Conclusions

- Shimadzu's single-quad, collision cell ICPMS 2030 offers full compliance with EPA Method 6020, among other methods for environmental testing
- Built on the LabSolutions Platform, the ICPMS 2030 software is familiar to users of Shimadzu GC, LC, LCMS, UV/Vis, FTIR, *et cetera*.
- The ICPMS 2030 has several features that translate into cost savings, time savings, and versatility / adaptability to other methods
 - Low argon consumption, software assistant functions, ease of maintenance, various accessory components to enhance throughput or expand analytical capabilities

Thank you

Questions? Discussion?